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Numerical results for the ground state of the HN~ and HCO + molecular ions at their near equi- 
librium geometry, obtained by the complex molecular orbitals (CMO) method in the extended basis set, 
are reported. The CMO wavefunction of the HN~ ion is compared with the CI wavefunction obtained 
in the same basis set. This reveals the nature of approximations inherent in the CMO method. A 
peculiar feature of the occupation numbers of the CMO natural orbitals is also explained. 
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1. Introduction 

The complex molecular orbitals (CMO) method which was recently developed 
[1-3]  incorporates dominant  electron correlations into the zero-order molecular 
wavefunction. This is substantiated by the numerical results for the N2 and CO 
molecules, obtained with a minimal basis set, which are close to those derived 
from limited configuration interaction (CI) calculations [2]. It was recently 
shown that the method could also be understood as a natural unification of the 
molecular orbital and valence bond theories of a chemical bond [4]. 

In the light of the usefulness of the method, it seems necessary to examine the 
scope and limitations of the C M O  calculational scheme. To this end, a comparative 
study of the wavefunctions obtained using both the C M O  and conventional CI 
methods is essential. In the present communication,  such an analysis of the results 
on molecular ions, HN~- and H C O  +, is carried out. 

2. Survey of the Closed-Shell CMO Formalism 

Since the theory of the complex molecular orbital method for a closed-shell 
system has been recently given in detail [2], only the essential features will be 
outlined. For  a closed-shell system of 2n electrons, a set ofm orthonormal  orbitals 
~vj is assumed to be given. ~vi's could be either LCAO-MO's  or orthonormalized 
symmetry orbitals. A new equivalent set of "complex" orbitals Zk is introduced 
by an appropriate  unitary (complex) transformation 

xk =~jgjk~j .  (1) 
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A molecular ground state could be described by an unnormalized wavefunction 
I~> [2], 

I~e>= ~e(ei~[~)) (2) 

where I~> is an antisymmetric normalized product (Slater determinant) formed 
from doubly occupied orbitals, ){k, 

I~ > = A [Z, ~Z, ~Z ~c~Z ~/~... Z.~Z./~] - (3) 

The operation ~ e  (taking the real part) acts only on the phase factor q5 and on 
coefficients, Ujk. It does not affect the basis vectors ~pj even if they happen to be 
complex functions. The common phase factor was explicitly introduced in (2) 
since absolute phases of complex orbitals Zk cannot be determined from a secular 
equation of the pseudo-eigenvalue form. The phase factor allows for a convention 
that the diagonal elements of the unitary matrix Ujj are real and non-negative. 

The wavefunction in Eq. (2) leads to the energy formula 

E -  [ho + ~e(e2i4'Dht)]/[1 + ~e(eai4~ (4) 

where 

ho = <a~l_Ola~>, 

D=<~b*l~b ) , and 

hi = <@*[/41q~>/D. (5) 

Since 1r and 145> are two nonorthogonal Slater determinants, D and ha may be 
calculated by the method of LSwdin [5]. Using LSwdin's method, one obtains [2]: 

D = (det,la[) 2 , (6) 

ho = 2ZiJooiy  + Zi~i, i, [ijli'j']oooi,j,, (7) 

and 

hi = 2SijTifl]ij + 2iji,j, [ijli'f]f20(2i,j,, (8) 

where a is the overlap matrix given by 

~,~-  < z * I z j > -  I z , z # ~  = F,~= , u~u~ (9) 

and where matrices e and ~ have elements 

~ i j = S k =  1 * . m - 1  n UikUjk  ' O i j = ~ & l = l U i k U j t (  a )lk (10) 

T/j and [ijli'j'] in Eqs. (7) and (8) denote one- and two-electron integrals which are 
exactly the same as those that appear in the LCAO-MO method. 

The optimal set of coefficients Ujk and the phase angle q5 may be obtained 
directly by a numerical minimization of the energy given in Eq. (4). Alternatively, 
one could solve the corresponding secular equations. One of these secular equations 
follows from the energy variation with respect to ~b [3]. 

sin(2~b + co) = R/S  (11) 

where real numbers R, S and ~o are determined from 

R = ID[Zlmh~; ei'~ = D(ho - hO.  (12) 
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For the other secular equation, the following pseudo-eigenvalue equation 
has been recently derived [2]" 

2 m  *__ * i : l , m  (13) j : I G i j U j I - F ,  IUil , l=l ,n �9 

The complex non-hermitian matrix G is given by 

G = h + e2i4'OE(ha - E)g2 + (I - 12)k,O]. (14) 

Matrices h and k are defined by 

hi j=  Tij+ ~i,~,[ijli'j']r kit= Tij+ ~,i,j,[ij[iT']f2j,i, (15) 

and I is the identity matrix 6~j. 
The secular Eq. (13) is solved by successive matrix triangularization accompa- 

nied by solving the Eq. (11) in each iterational step. The matrix triangularization 
may be conveniently performed by a set of elementary unitary transformations 
with nontrivial (2 x 2) part of the form 

(c,) 
U =  - s *  c ; c=cosO (16) 

s = sinO. e ~ . 

Since resulting orbital energies should be monotonically increasing so that 
complex orbitals of lowest energies are occupied when the self-consistency is 
reached, the appropriate ordering should be built into the triangularization 
algorithm. 

3. C M O  Numerical Results in the Extended Basis Set 

The CMO secular Eqs. (11) and (13) were solved for the linear HN + molecule 
ion in the ground state at its near equilibrium geometry (RNN=2.0674 bohr; 
RNn = 2.0 bohr). As the initial basis set of orbitals the LCAO-MO-SCF solutions 
of Ref. [6] were utilized. In order to compare our results with the CI results 
(the details of the CI calculation whose results are here used are given in Ref. [6]), 
the three lowest 0--orbitals (la2o-30-) in the above set were left in "core" (as in Ref. 
[6]). The "core" orbitals are not subjected to a complex unitary transformation. 
The remaining orbitals in the set contain ten 0- and four rc orbitals of which 4~, 50-, 
and lrc are occupied in the ground state configuration, 10-220-23o-24o-250-217Z 4. 

The solution of the CMO secular equation yields an electronic energy EcMo = 
--109.1876 hartree which is 0.1138 hartree below the LCAO-MO energy. This 
makes 66.9 % of the CI energy lowering, 0.1700 hartree [6]. The following values 
of ho, hi, D and 4) correspond to the CMO solution: ho=-22 .0227 hartree, 
hi = ( -  22.96500- 0.15970 hartree, D = (0.4860- 0.0261i), ~b = - 0.0978 radian, 
while the energy contribution of the core electrons and of nuclear repulsion 
is Eo = -86.1652 hartree. Coefficients Uki (a) for the occupied complex ~-orbitals 
(i= 4, 5) are given in Table 1. The coefficients of the occupied re-orbital are as 
follows: U 11(~) = 0.9616; U 2 a (~z) = (0.0143 - 0.2626/); U 31(~) = ( - 0.0150 + 0.0298i); 
U4 ~(~z ) = (0.0055 - 0.0709i). 
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Table 1. Coefficients Uu(a) of the occupied HN~- a-orbitals, i = 4, 5 

Uk4(a) Uks(a) 

0.9958 -0.0398 + 0.0220 i 

0.0418 + 0.0215 i 

-0.0023 + 0.0354 i 

-0.0010 * 0.0071 i 

0.0014 § 0.0038 i 

-0.0029 + 0.0189 i 

-0.0009 § 0.0630 i 

0.0057 - 0.0041 i 

0.0002 § 0.0202 i 

0.0003 § 0.0112 i 

0.9930 

-0.0091 § 0.0165 i 

-0.0028 + 0.0089 i 

0.0028 - 0.0085 i 

-0.0076 + 0.0307 i 

0.0058 - 0.0470 i 

0.0157 - 0.0841 i 

0.0034 - 0.0288 i 

0.0015 - 0.0058 i 

The one-electron reduced density matrix Q~I) 

~(1) = ,.~e.(Q + e2i4~Df2)/,~e( 1 + e2i4'D) 

was diagonalized and the corresponding CMO natural orbitals and their 
occupation probabilities 7k were obtained. In the a-space only four natural 
orbitals have non zero occupation probabilities, which are in the decreasing 
order 0.9981, 0.9958, 0.0042, and 0.0019. Also, out of four rc natural orbitals, 
only two have non-zero occupation; i.e. 71(rc)=0.9780 and 72(rc)=0.0220. A 
similar feature of the CMO results was also noticed in the minimal basis set CMO 
calculations [2]. These results indicate that the CMO wavefunction (2) may be 
generally transformed into a form in which the number of occupied complex orbitals 
equals the number of empty complex orbitals, while all other orbitals are real. 
Although we do not have a formal proof of this equivalence, we shall show that 
the number of independent variational parameters is the same in these two 
cases. 

Suppose that in the CMO wavefunction, as in Eq. (2), the number of occupied 
a-orbitals is #, and the number of empty a-orbitals is v, with v > #. According 
to Ref. [3] the corresponding transformation unitary matrix Ujk(a) is given 
essentially by 2/tv generalized Euler angles 0~ l) and qb~ ~ which may be considered 
as independent variational parameters. It is indicated above that the same result 
could be obtained if 2/t orbitals are allowed to be complex and remaining (v-/t)  
orbitals are real. In order to determine these real orbitals in the minimization 
procedure according to [3-1 we need (v- / t )x  2/t Euler angles, since the corre- 
sponding orthogonal transformation matrix may be assumed in parts triangular. 
Indeed, an arbitrary orthogonal transformation of these (v - /0  real orbitals 
between themselves does not change the wavefunction, while the remaining 2/t 
real orbitals form a basis for the subsequent CMO treatment, thus permitting 
also an arbitrary orthogonal transformation between themselves. To determine/t 
occupied complex orbitals in the space of 2# basis orbitals, additional 2# 2 gen- 
eralized Euler angles are needed. Thus, total number of variational parameters 
would be 2/t(v - / t )  + 2/t 2 -- 2/tv, which is the same as in the complete CMO treatment. 
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This seems to explain the peculiar results for the occupation probabilities of the 
CMO natural orbitals. 

The CMO calculation was also performed for the near equilibrium geometry 
of the linear HCO + ion in the ground state, using the LCAO-MO-SCF vectors [7] 
which contain 13o-- and 5~-orbitals of which two lowest o. orbitals were left in "core". 
An energy decrease 0.1487 hartree with respect to the LCAO-MO energy was 
obtained. This amounts to 69.7% of the energy lowering obtained in the CI 
calculation [7]. 

In the case of HCO § molecule ion, 25 seconds of the C PU time of the IBM/370 
were needed for 16 iterations on the solution of the CMO secular equations, 
when the integrals were prepared in advance. Initial vectors were constructed 
by a small CMO treatment of two ~-orbitals. 

1 

2 

3 
4 

5 

6 

7 

4. Comparison of the CMO and CI Wavefunctions 

In order to gain an insight into the nature of approximations inherent in the 
CMO "ansatz", we compare in Table 2 a few largest components z~(CI) of the CI 
ground state wavefunction of HN]  [6] with the corresponding components 
contained in the CMO result, z~(CMO). Since the CI and CMO calculations 
were performed using the same basis set, components z~(CMO) are obtained as 
the overlap of the (normalized) CMO wavefunction [gt> and the Slater determinant 
[~k) of an appropriate configuration. 

z~(C MO) = (< ~I ~>/< ~I I//> 1/2) 

= ~ (  e ~ < 7'~I4) >)/(0.5(1 + ~,ee ~'+D)) ~/~ (18) 

Table 2. Dominant  components of the CI wavefunction [6] of the HN + molecule ion compared with 
corresponding components extracted from the CMO wavefunction 

1 
k Slater Determinant 17k > N I Xk(CI) 

1 
1 4a 2 5a 2 i~ 4 1 0.957 

2 4a 2 5a 2 lw2x 2~2y 2 -O.113 

3 4a 2 5a 2 l~xa l~y8 2~xB 2Wy~ 2 -0.074 

4 4a 2 5a 2 l~x~ 2Ty8 2~x8 l~y~ 2 -O.O47 

5 4~ 2 5a 2 l~x~ I~.B 2~yB 2~x~ 2 -0.026 
6 4a 2 5a 2 lw 2 2 -0.O13 
7 4a 2 I~ 4 2~ ~ 2~x 2 -0.042 

2 x' 
8 5a 2 i~ 4 2= 2 -0.022 

2 x 
9 4a 2 5a 2 i~ x 2~ya 4~y8 4 -0.038 

iO 4~ 2 5a 2 l~xa l~y8 2~x8 4~ya 4 -0.025 

ii 4~ 2 5a 2 l~xa l~y~ 2~y8 4~x8 4 -O.O16 

12 4~ 2 5o 2 i~ a l~y~ 2~y8 4~x~ 4 -0.008 

13 4~ 2 5o 2 I~ x 2~ ~ 4~x~ 4 -0.004 

14 4~ 2 5aa lla~-~ x 2~;~ ~Vy8 4 -0.020 

15 4a 2 5aa lla8 I~ 2 i~ ~ 2~y~ 4 -O.017 

16 4a 2 5aa lla~ i~ 2x I~Y8 2~y8 4 -0.003 

17 4a 5a 8 lff~' 2~2xX--Y 4 O.O16 

] Xk (CMO) 

0.974 

-0 .073  
-0 .073 
-0 .073  

~ ~ ~2~x~y a x 2y 
XF n Y2" 

02 ~ 2 

-0.020 

-0.020 

-0.020 

x 2y 2 x y 

-O.023 

-0.023 

2 2 -- 
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(~klq~> is the overlap of two nonorthogonal Slater determinants, and it is equal to 
the determinant of the overlap matrix of basis orbitals in I~> and occupied 
complex orbitals in ]~>. Thus, this is certain submatrix of the transformation 
matrix U in (1). 

It is seen from Table 2 that certain configurations are not present at all in the 
CMO wavefunction, although they contribute to the CI wavefunction (c= 3, 
for example). In the present CMO "ansatz" they are not allowed by symmetry 
since the transformation (1) is performed separately for a and ~ orbitals (like in 
the restricted HF). As indicated in the entry )~k(CMO) of Table 2 the c = 3 con- 
figuration is characterized by the promotion of an electron pair from the a-space 
into the re-space, which cannot be expressed by the "restricted" CMO wave- 
function. 

Only representative Slater determinants are explicitly given in Table 2. 
The number N suggests how many equivalent Slater determinants may be ob- 
tained by substituting ~ for fl or nx for n r and vice versa. Each interacting con- 
figuration c contains a symmetrized set of determinants [8]; i.e. spin and space 
adapted. 

In the present analysis of the CI ground state wavefunction of the HN~ ion, 
all configurations with CI expansion coefficients larger than 0.01 (427 Slater 
determinants in 51 configurations) were considered. The Slater determinants 
thus taken into consideration were distributed into five classes. In Table 3, the 
sum of squares of the CI coefficients for the given classes of Slater determinants 
are presented. Class 1 contains all Slater determinants which may be obtained 
from the main ground state configuration by redistributing electrons inside of 
each symmetry subspace of orbitals. All such Slater determinants could be generated 
(accounted for), in principle, by the "restricted" CMO transformation (1). Class 2 
corresponds to Slater determinants in which two electrons were exchanged 
between a- and n-spaces. It is clear that the CMO wavefunction is an approxi- 
mation to that part of the CI wavefunction which contains the main ground state 
configuration and Slater determinants of class 1. According to Table 3 about 88 % 
of a departure of the CI wavefunction from the main ground state configuration 
belongs to class 1, and remaining 12% to all other classes. Assuming that the 
perturbation in the energy is proportional to a square of the perturbation in the 
wavefunction (as the perturbation theory suggests), it is clear that about 10% of 
the correlation energy is out of reach of the CMO "ansatz" for the symmetry 
reason alone. A refinement of the CMO method which would cover also this 
part of electron correlations would require few additional configurations to be 
considered explicitly. 

Table 3. Relative weights of different types of the CI components 

I ~"lass " 1 

r 

I .Xj2(CI) 0.0694 

2 3 

~x~y8 +~ ~y~x 8 

4 5 
2 ~ 2 
X y 

0.0064 0.0016 0.0009 0.0004 
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From Table 2 it is also seen that coefficients of Slater determinants which 
appear in the CMO wavefunction for a particular configuration are given by a 
single value. This value is an approximation to the average of the corresponding 
CI coefficients. In a few dominant configurations (like c = 2 in Table 2) this averaging 
may represent quite a drastic approximation. Thus, in a more ambitious calcula- 
tional scheme based on complex MO's few dominant configurations should be 
treated explicitly like in the multiconfigurational Hartree-Fock method. The role 
of complex orbitals would be to collect large number of small CI components 
around the multiconfigurational skeleton. However, due to nonorthogonalities 
the simplicity of the CMO method will be lost in such a scheme. 

5. Conclusion 

Numerical results for the HN + and HCO + ions obtained by the CMO method 
in the extended basis set demonstrate that about 2/3 of the electron correlations 
described by present CI calculations [6, 7] may be reproduced. The significance 
of this result lies in the simplicity of the secular equation which is comparable 
to that of the LCAO-MO method. From the detailed analysis of the HN + ground 
state CI wavefunction certain limitations of the CMO "ansatz" were recognized. 
It seems clear that a significant improvement over the CMO "ansatz" would 
require a multiconfigurational treatment, in which, however, the simplicity of the 
CMO method would be considerably reduced. 
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